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Abstract. We discuss the problem of regularization of the non-linear U model in a fashion 
consistent with the formal chiral invariance possessed by the non-polynomial lagrangian. 
The single loop contributions to the Ward-Takahashi identities are only chirally invariant 
under special conditions on the extra constants arising from a general regularization process 
we define; these conditions can be satisfied in both the massive and massless cases. We 
give a natural method of regularization which, however, violates chirality, and indicate that, 
in particular, superpropagator methods for discussing this or similar theories must be 
treated with great care to avoid violation of Ward-Takahashi identities. 

1. Introduction 

Non-polynomial strong interactions have been proposed (for example, Weinberg 1967) 
as a way of incorporating current algebra structure into a field theoretic mould. Calcula- 
tions have been made from suitable non-polynomial lagrangians only in the tree approxi- 
mation, though there have been some tentative attempts (Keck and Taylor 1971, 
Lehmann and Trute 1972, Bessis and Zinn-Justin 1971, Lazarides and Patani 1971) 
to include unitary corrections to this. Since these models are non-renormalizable in 
perturbation theory, they contain extra parameters beyond those in the original 
lagrangian. The number of these parameters depends heavily on the method of regulari- 
zation used to obtain finite results in perturbation theory. However the process of 
regularization need not be consistent with physical properties naturally required of 
any physical theory. The problem of ensuring unitarity and causality has been recently 
analysed (Taylor 1972, Daniel1 and Mitter 1971, Lehmann and Pohlmeyer 1971) in 
various ways for a class of non-renormalizable theories. This analysis does not cover 
the derivative coupling arising in the strong interactions we wish to discuss, though it 
very likely could be extended to this case. 

We have, however, a new problem arising since we now wish to  regularize in a 
manner also consistent with whatever chiral invariance is assumed for the lagrangian. 
Thus if we start with a lagrangian invariant under chiral SU, x SU, we would hope 
to preserve the conservation of the vector current I/’ and axial current A’. This need 
not occur as is known in the analogous case of the triangle anomaly (Adler 1969) in 
quantum electrodynamics, which arises from subtleties in the divergent triangle graph. 
It is necessary to investigate whether similar anomalies arise in the strong interaction 
case. That is the main purpose of this paper, at the same time investigating the amount 
of ambiguity that is present. In particular we will be concerned with any possible 
reduction in the amount of ambiguity arising from the conservation conditions. 

1403 



1404 B W Keck and J G Taylor 

Our investigation of these questions will be restricted here to lowest order closed 
loop diagrams. We will find already at this level that anomalies may be present. These 
are restricted however to the massless (chiral symmetric) case, the Ward identity corre- 
sponding to PCAC in the massive case being enforceable. 

We proceed in $ 2 with a discussion of the perturbation theory calculations for the 
axial vector current in the non-linear Q model. In $ 3 we describe our regularization, 
attempting to use the most general approach possible. In $ 4  we analyse the PCAC 

Ward identity, showing how it constrains the relevant Green functions, and in $ 5 the 
vector current Ward identity. In $ 6 we discuss unitarity. In $ 7 we consider the massless 
case. The previous discussion covers this, but here we use a different regularization, 
inapplicable in the massive case, and show how this leads to incompatible constraints. 

2. Perturbation theory rules 

The Q model lagrangian is (Gell-Mann and Levy 1960) 

9 = + { ( & J ) ~ + ( I ? Q ) ~ }  +m20/A 

where a' = A-' - q52. We use 4 as field coordinates, though this is unnecessary. The 
axial current is 

corresponding to transformations generated by 

and with divergence 

I?A = -1m2q5. 

That 4 is an (isospin) triplet of fields is essential-if it were a 
would be equivalent (through a coordinate transformation) to a 

(4) 

singlet, Y ( m 2  = 0) 
free lagrangian. In 

that case the divergences arising from closed loops will have to cancel. They-do not 
do  so when isospin is present, as will be evident from our further discussion. 

The Feynman-Dyson expansion of each Green function (GF) contains divergences 
of arbitrarily high powers of momentum cut-off. Therefore counterterms will involve 
fields differentiated an arbitrarily large number of times, and be of arbitrarily high 
degree in the fields. Correspondingly, each GF is not fixed until an infinite number of its 
values are given. We wonder whether imposing the Ward identities (WI) derived from 
the PCAC condition and vector current conservation on the GF reduces this to  a finite 
number. 

The addition to the lagrangian of counterterms depending on derivatives of the 
fields modifies the field's conjugate momentum. With the usual renormalizable 
lagrangians this is simply multiplication by a constant, and easily handled. But in the 
present case, we do  not even know how to find canonical variables once we have added 
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some typical counterterms. If one ignores this problem, the GF one obtains obey 
formally a complicated equation which does not appear to arise from field equations 
and commutation relations. One consequence is that in the symmetric (m = 0) case, 
to add only symmetric counterterms is no guarantee of symmetric results. 

Consider the calculation of GF involving one current as well as canonical fields. 
Apart from tadpoles, the simplest (least order in A and least number of legs) of diagrams 
with closed loops are those of order 3 with 3 legs, as shown in figure 1, (omitting tadpoles, 
which do not affect the point to be made). The label f for finite in the loop of the first 
indicates that the counterterm to the single loop contribution to the elastic two-particle 
scattering amplitude of figure 2 has been added to the lagrangian. This counterterm 
involves derivatives of the fields. Therefore A’ = (89/84,,)4’ is altered, so giving the 
third diagram in figure 1. In more tractable theories this would cancel the divergence 
of the second diagram. That is, in obtaining finite GF of the canonical fields one would 
also obtain finite GF involving in addition one current. This does not happen in the 
present case, which may be related to the discussion in the last paragraph but one. 

Figure 1. The simplest single loop diagrams for the axial current matrix element. 

Figure 2. The origin of a lagrangian counterterm. 

The PCAC WI are ( + 0 denote time ordered vacuum expectation values) : 

To impose them, one needs to define GF containing 4: once. Counterterms in 4’ will 
contain derivatives of the fields, certainly changing it from the simple initial 4’ = 6, 
and presumably changing the group of the transformations. 

Thus there are three sets of counterterms involved: those to be added to 9, A’ 
and 4’. The relation A’ = (89/84,)4’ might be used to give one set in terms of the 
other two. Some restriction on the 4’ counterterms might be derived from asking 
something of the corresponding group, though this is not a plausible or attractive 
proposition. 

3. General regularization 

Our procedure involves abandoning the use of explicit counterterms in the lagrangian. 
We have calculated various diagrams formally as products of A-f and its derivatives 
A,,, A,,,,,. . . . Such an expression has an unambiguous meaning as a distribution on test 
functions which vanish sufficiently fast when various arguments coincide, and may be 
extended to test functions without these restrictions. We try to fix the extension in each 
T A =  - ’  i (n+m2)-1,  IJ = aUaN. 
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case with the WI. In place of the mentioned connection between the three sets ofcounter- 
terms, we assume that wherever the same product of A, A,, . . . occurs, for example in 
different terms of a Ward identity, it takes the same value (ie has the same extension). 

To check the WI corresponding to PCAC formally, that is with divergences untreated 
(or no  counterterms), one needs to take proper account of tadpoles. Particularly, if 
one uses - AP(x - y )  for ( 4 , ( ~ ) 4 ~ ( y ) )  + 0 ,  one must add a term of the form id4(0) In F ( 4 ) ,  
which contains tadpoles, to the lagrangian. Having detached our procedure from its 
formal background we no longer have a rational way of dealing with tadpoles : we just 
delete them (and ib4(0) In F ( 4 ) )  completely. The omitted terms-tadpoles and - i6(x - y) 
-have similar form, and might be expected to cancel each other in any case, though 
we will not attempt to show that here. This is accompanied by the rule that in a product 
containing A""(x-y) and at  least one other line between x and y we replace A,'" by 
-m2A. We find that this enables us to verify formally the WI in our single loop approxi- 
mation. 

Having formally verified a WI in some order, we then examine what deviation one 
finds upon looking more closely. Thus we may have used the formal identity 

(A2), = 2AA,. ( 6) 
In fact having defined A2 and AA9, we find 

(A2), = 2AA, + ad, (7) 
where a is a constant depending on the extension of A2 and AA,. The WI impose con- 
straints on a and several analogues. We find that these can be satisfied by choice of 
the extensions, involving two free parameters. The special regularization in the massless 
case is similar, and is described in 9 7. 

4. The regularized axial current Ward identity 

We carry out our calculation for the third order with three legs (ie n = 3). The WI is 
shown diagrammatically in figure 3. We omit iL hereafter. 

Figure 3. The formal Ward identity. 

The formal verification may be greatly simplified by notation, which we now take 
a page to explain. We write figure 4 as 

i 6 6 6 6Ai  83' ----______ 
2 841 642 643 w7 w p  w y  
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Figure 4. The contribution to an axial current matrix element 

Here 4, = 4(xl), etc. p and y correspond to the internal lines - to two factors of 
A(x-y) that are understood. Factors of A(x-x,), A(y-x,) and A(y-x3), and integra- 
tion over y are understood. From 

(9) A,  = 4, - &#P$’ + c$(r#@) +terms of higher degree 
we have 

From 
9 = - 9 ~ 1 ~ 4 “  

we have 

= 6;’ 6;’ +eleven permutations of b,  y ,  2, 3 
6 9  

64p 64? 642 843 
- m2 6 t h :  +two permutations 

(whether a letter is a sub- or super-script is not significant). 

in (8) they give 
To explain the meaning of these formulae, take the first terms from (10) and (12): 

(13) 

Here p stands for a/dx@’, v for a/ay”, a for the component of A”, p, y for internal lines and 
1, 2, 3 for external lines. p written next to 1 means that the implicit factor A(x-x,) 
occurs differentiated with respect to x. v next to 0 means that the implicit factor A(x - y) 
corresponding to p occurs differentiated with respect to y. v next to 2 means that the 
implicit factor A(y-x2) occurs differentiated with respect to y. Thus (13) stands for 

-~~dyA~(x-x l )Av(y-x)A(x-y)Av(y-x2)A(y-x3)  2 6; Sf 6$ 6: (14) 

where now 6: etc are simply Kronecker deltas, and repeated indices are summed over. 

1 
-- 6;” 6; . 6;’ 6;’. 

2 ‘  

Now we proceed with the verification of the WI. Figure 5 is equal to 

Figure 5. Terms of a Ward identity, to order ,I3. 
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Here the prime in 4". means that by partial integration all derivatives are transferred 
from a to p, y and 1 ; that is, 

6 9  
64p 64y W a  641 

We make another convention: 6; 6;la, means that the factor A(x-xl) is replaced by 
6(x-x,). As mentioned in 6 3, we put 6 y  = -m2 etc (but 6fPP = -m2  6f -iS{la,). 
Thus 

8 9  
64p 64 y 6 4 a ,  64 1 

= - 2~60; 6:; + 6; 6:; + 6; 6 c ) + m 2 ( 6 :  6: + 6; 6: + 6; 6!)+ i(6; 6: + 6; 6f)Ial. 

(18) 
Returning to the first term in the WI (figure 3), notice that in placing the divergence, 
d/dxP acts only on 1 ,  p and y and 

+ i(6; 6g - 6; 6; - 6; 6f)l,, . 
Therefore the left-hand side of figure 3 is equal to 

+two permutations of 1, 2, 3 
6 9  - '6" 68la 

64p 64$42 643 
and the WI follows immediately. 

the WI involving (A'4142434445) 

various formal identities used. We define figures q a ) ,  (b), ( e )  and ( d )  as respectively 

We show in the appendix that the same approach works for the single loop term of 

Now we ask what deviations from the WI (figure 3) are caused by the defects in the 
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Figure 6. Sources of corrections to the formal Ward identity. 

now with the products of A, A,,, . . . finite, though undetermined within addition of a 
polynomial to the Fourier transform. Our deviations arise in two places. Firstly, in 
the divergence of the first term, of 

ti{-(6;, 6g+6;, 6: +6;, 6~)+6",(6;,+6;,)+6;(6:,+66':,)+6~(6~+6~,)) 

X 6y +two permutations. wfl 64y 6 4 2  643 
Secondly they arise from the second and third terms, not in the divergence, which simply 
amputates the U leg, but in the subsequent integration by parts, where we take a /axP on 

So the difference between the left-hand side and the right-hand side of the WI (figure 5 )  
is the deviation from formality of a /axp  on 

= -i[A2 6:,(6::-$m2 6:)-AAv 6q,,(6:v+8:v) 

+AAP(6~,,66;,+6~, 6;,-+m2(6; S:+S; S;+S: 6;)) 

+ A, A, 67,, 6: - A,, AV{ 67(6:' + S:,) + a;,, 6; + 6:, 6 ; )  

- A  A,,,{ 60;(6iv + 6:,) + 6; Si,, + 6: 6 i v }  + A v  A,,,(6; 6; + 6: Si)]+ two. (24) 

Here we have written the internal lines, corresponding to fl and 7, explicitly, and 
adjusted the signs so that A, means (a /axv )  A(x - y), although v next to 2 or 3 still means 

The errors in the formal identities must vanish on the restricted test functions used 
aiayv. 

initially in defining the distributions involved, so we have 
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Then the coefficient of Si; 62, in the Fourier transform, 

5 dX, exp(iP,,X,), 
k =  1 

at X = 0, with legs 1 ,  2 and 3 amputated, of the legs of the WI is 

- i {- P:,(g +j)+ (p;2  + p:,) 
a e-b-d 

a b+d-e 1 +P:,P:( --+b+d-e 2 +Pi,(P:+P2,) 
a 

a +- +(P;+P:)- 1 4 
a 4b+d g - j  

2 
+(P:,P;+P:,P2,) 

+ P:( -Samz + f - 5c+ h -  k) 
+ (P: + P:)( - $ n 2 a  +$,f- Sc- +h -+k) + n 

where P2,  = P2 + P3 etc, P: , P; ,  P: , P; ,, P f 2  and P: , are independent. This vanishes 
if and only if all but b, c, d ,  and e vanish, and d = -4b, e = - 12b. Is this possible? 
We can answer this without looking in detail at our distributions, denoting one 
possible choice of A 2  by etc, corresponding to a , ,  bo, .  . . , by looking at the effect 
of the change to 

A2 = ( A 2 ) o +  A 6 

AA, = (AA,), + B 6, 

A,A” = (ApAv)o + I(C0 + Dk,” + Ed,”l6 

AA,” = (AAvv) ,  + I(FO + G k P V  + Ha,,l6 

4 A P V  = (AvAav)O + ( J O  + K )  6, 
A,,,Apv = ( A L p v A P v ) O + ( L ~ 2 + M 0  + N )  6. 

From 
6(A2) ,  = 6 ( A 2 ) , 0 + ( A - 2 B )  6, 

etc, we find 
a = a o + A - 2 B  

b = bo-C-F 

c = C O - D - G  

d = d , + B - E - H  
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e = e 0 + 4 C + E - W  

f = f o + 4 D - 2 K  

g = g o + C + E - J  

h = h , + D - K + m Z B  

j = j , + F + H - J  

k = k , + G - K + m 2 B  

1 = l,+J-L 

m = m , + K - M + m 2 ( 4 C + E )  

n = n o - N + 4 m Z D .  

141 1 

If  m # 0, these equations have a unique solution for A, B, . . . in terms of a, a, ,  b, bo, .  . . 
(whatever they are), so we can enforce the WI. The parameters b and care unconstrained. 
If  m = 0, the equations can be solved if and only if c +f- 3h + k = c,, + fo - 3h, + k,, . 
The WI requires that c+  f - 3h+ k = c, so fixes c. But now the solution is not unique, 
and our theory still has two free parameters, for example, b and B. 

A faint hope one might entertain at this point is that the GF are independent of these 
parameters. They are not, nor is the four particle mass shell S matrix. 

Because some of the arguments of the products of A, A,,, . . . are integrated over, one 
can formally integrate by parts and change variables of integration to obtain different 
expressions for the same GF. This will presumably amount to adding any local expression 
with appropriate properties. It is not difficult to see that allowing this will largely undo 
the above constraints on the distributions. 

One can carry out a similar calculation for the WI involving (Aw4142434445)+0. 
Being extremely complicated and giving many opportunities for arithmetical errors, 
we have not completed it. We see no reasons in principle why one could not apply 
our method to all the WI. 

5. Regularized vector current Ward identity 

This does not affect these conclusions. The distributions considered above occur in the 
typical diagram of figure 7. 

Figure 7. A diagram occurring in a vector current Ward identity. 

The WI requires 

a,,(A,,Av-AAPv) = 0 

so 

g - j  = h - k  = 0.  
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This is already required by the axial current WI. Thus there are no further restrictions 
on the two arbitrary constants. 

6.  Unitarity 

The formal identities used for the products of A, A,,, . . . are all true if A, A,,, . . . are 
replaced by A - ,  A;, . . . , so for unitarity it is sufficient that 

ReA2 = A - 2  

Re AA,, = A-A; 

etc. We need now to give some details of our distributions. Let 

A-2  = d -  

A-A; = 9,; 
A;A; = g,,,v- +a,,&- 

6 2  d = + -x) 

AA,, a,+ = g,;e + (x + - x) 

etc. Then 

(33) 

(34) 

etc, modulo infinite polynomials. Now 

d - ( x )  = J dP2P,(P2)UX, ,U2) (35) 

etc, where p ,  etc are real, so we can fix these polynomials for 
to do etc, by 

etc, corresponding 

etc. These (A2)o etc satisfy the unitarity equations (32), so they hold for A2 etc if and only 
if A,  B, . . . are imaginary. Also 

The first term must vanish because d(A-A;),, = 0. Thus bo,  co and do are imaginary. 
It is easy by this method to see that all of a,, b o , .  . . are imaginary. If m = 0 we should, 
say, replace (- O/p2)" by {(,I2 - D)/(A2 + p 2 ) } " .  This gives the same result. I t  follows 
that we maintain unitarity if a, b, . . . are imaginary. From (29) and the following discus- 
sion we see that this is done if b and C are made imaginary. 
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7. Zero mass mesons 

The zero mass propagator is 

so formally 
2 

AA,, = - - X , ,  A3 
K 

4 
A,,A, = -X,,X, A4 

K 2  

2 8 
AA,,, = --geV A3 + z X , , X ,  A4 

K 
(39) 

12 
AvA,,, = - - X , ,  K 2  A4 

48 
K 2  

APrALpY = - A4, 

Whereas in the previous sections we take the raw products on the left-hand side as un- 
varying (from term to term) but unrelated (before imposing the WI) components of our 
formulae, now we take A". This is stronger, since now there will be relations between the 
products : consider the effects of the changes 

A" = (A"),+ A n I J n - 2  S. (40) 
(The A ,  are dimensionless. One could include AblJ"-3 S + A i I J n - 4  S+ . . . but leaving 
them out is consistent and perhaps preferable, the I of the original lagrangian then 
fixing alone the scale of the system, and does not affect the argument.) One finds 

A = A2 

4 B = -A3 
K 

It follows in particular that g and I ,  both required to vanish by the WI, are independent 
of A , .  

Define a, and b, by 

A;,, = - 2 n X ,  An+1+anlJn-2 S,, 
X 2  An = U A n - 1 + b , 0 " - 3  6. 

They are not independent 

4 a, = a ~ + A , - - n ( n - l ) A , + ,  

b, = bt+4(n- l ) ( n - 2 ) A n - ~ A , - ,  

K 
(43) 
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so 

b n +  1 c, a,+- 
IC 

(44) 

is invariant. One finds g = l 2 8 c , / ~ ~ ,  1 = 96c4/rc2. c, can be obtained most easily from 

(XpA"), = - ( 2 n - 4 ) A " - 2 n ~ , n " - ~  6 (45) 

which gives 

Since 

except for an added term proportional to P 2 ( n - 2 )  (lower powers omitted for dimensional 
reasons, as above), we have 

, ( + K ) n - l  
c , =  -1 

n !( n - 2) ! 

Thus g, 1 # 0, so we cannot fulfil the WI. 
The possibility of partial integrations and translations, mentioned at the end of 

5 4, does not arise here. Another merit of this method of regularization is that although 
anomalies arise here, they do  not do  so with this method in massless quantum electro- 
dynamics. In that case the polarization operator npv, for the photon, in the single loop 
approximation has the value 

24 48 
K K 2  

71'' = -- A3 6,,+-Xx,X, A4 

Then 

ny; = 12{(j-g)0 + ( k - h ) j 6 ,  

= 12 -e4--a3 0 6,. (ll? ; ) 
This is zero if and only if 

64 
a3 = kC4 

so this method is successful. 

8. Discussion 

(49) 

In summary, we have shown that the Ward identities can be satisfied in the single closed 
loop approximation, in both massive and massless theories. This is true provided a 
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general enough regularization scheme is used, allowing the introduction of a suitable 
number of arbitrary constants. Our results show that the ambiguity in the most general 
regularization of the single loop contribution is indeed reduced by the imposition of 
chirality. Without the invariance condition there are thirteen arbitrary constants ; 
after the Ward identities have been achieved there are only two free parameters left. 
Unitarity reduces these even further to two real parameters. 

An alternative regularization scheme, with less arbitrariness, is possible in the 
massless case, but does not preserve chiral invariance. I t  may be possible to  invent a 
natural regularization scheme conserving chirality which falls in between the most 
general one we describe in Q 3 and the very special one of Q 7, though we have not yet 
been able to do this. I t  will be necessary to do this before rescattering corrections to 
the rc-rc scattering lengths can be unambiguously calculated. 

It is not unreasonable to  expect that our method (omissions of terms corresponding 
to tadpoles) may be extended to  higher orders, in that by it the Ward identities may be 
verified formally and then corrections arising from regularization calculated. The 
complexity of the formulae involved is so great however that we have been unable to 
check this. Even less are we able to  say whether or not the corrections can be made to 
vanish. 

Let us now relate our results to superpropagator methods. Such methods have 
only been developed in any detail for massless theories. The superpropagator depends 
on an arbitrary analytic function. This corresponds to the arbitrariness in the definition 
of A" ; in other words to the more restrictive regularization scheme used in 9 7. Therefore 
such an approach will violate the Ward identities (though not the Adler condition which 
can easily be satisfied in the massless case). 

We conclude that to obtain a regularized theory consistent with chiral invariance 
i t  is necessary to base the superpropagator expressions on perturbation contributions, 
calculated without performing explicit differentiation on internal lines. 

In other field coordinates than those of the U model, the vector current Green 
functions can become as complicated as the axial vector ones, even in the single loop 
case. We have not investigated in detail if it is possible to perform regularization con- 
sistent with chiral invariance in these cases ; in the massive case this can be enforced by 
requiring all the formal identities for the products of A, A,,, . . . to be true, although this 
may not be necessary. 

Because the possibility of satisfying the Ward identities has not been fully established 
by our work, and we have models in which it is definitely violated, we must be prepared 
for their violation in nature. This is a similar possibility to that arising in the Adler 
triangle anomaly in QED (Adler 1969). Our results specify definite ways in which the 
Ward identities may be violated, and so should allow predictions to be made as to 
corrections to the Goldberger-Treiman relation (Pagels and Zepeda 1971) and to other 
results obtained using them. 

Appendix. Formal verification of WI involving <AC@1@2@3+4+5> +o 

This WI states that the sum of the diagrams of figure 8 is zero. 
The first and second have already been shown to vanish. To see this for the second, 

notice that in Q 4 the form of 6 9 / 6 4 ,  db7 ~ 5 4 ~  ~ 5 4 ~  is not used, and the proof goes through 
with 69/64,134~ 6cj4 645 instead. 



Figure 8. Terms of a Ward identity to order As, 

We write the rest as, respectively : 

6 9  6 9  
X 

648 6 4 p  WY 643 6 4 p  Wy 644 645 

+twenty nine permutations of 1, 2, 3,4 and 5 

69 +twenty nine permutations 
6 9  

X 
648 W/J 642 643 6 4 p  644 645 

(52) 

(53) 

The meaning of the prime in is given after equation (15), and of I d ,  etc after (17). 
Our procedure is as described in 9 3. One application not encountered in 9 4 arises 
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from the triangle diagrams. When for example the line between x and y in figure 9 is 
A p p ( x - y )  we replace it by -mz A ( x -  y ) -  i ~ ( x - Y ) .  The second term may occur in 
something like 6 ( x  - y )  A(x  - z )  k v ( y  - z).  This we replace by 

6 ( x - y )  A ( x - z ) {  -mz A ( y - z ) } .  

Figure 9. Triangle diagram contributing to the Ward identity for (Ap4,42434445)+0.  

To calculate (52)  we need the following: 

so that (52) is equal to 

These also tell us that (53) is 

and that (54) is 
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To calculate (55) we need 

6At: 
841 642 643 wfl wy 
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+ ( S i  6: +a; 6;) 6:}la2+6,164 69 +twenty nine permutations. 
(67) 

p 47 4 3  45 

Finally, if one adds (60), (61) and (62), using the explicit expressions for 

6 9  6 9  6 9  
641 642 643 64d’ 64d 64p 642 643’ 64d w p  64? 843’ 

but without mobilizing 6 9 / 6 4 ,  64? 644 6 4 5 ,  one finds minus (67). Therefore formally 
the sum of the diagrams of figure 8 is in fact zero, as required by the WI. 
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